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Abstract

Neuromorphic computing is a brain-inspired approach to hardware and algorithm design
that efficiently realizes artificial neural networks. Neuromorphic designers apply the
principles of biointelligence discovered by neuroscientists to design efficient computational
systems, often for applications with size, weight and power constraints. With this research
field at a critical juncture, it is crucial to chart the course for the development of future large-
scale neuromorphic systems. We describe approaches for creating scalable neuromorphic
architectures and identify key features. We discuss potential applications that can benefit
from scaling and the main challenges that need to be addressed. Furthermore, we examine a
comprehensive ecosystem necessary to sustain growth and the new opportunities that lie
ahead when scaling neuromorphic systems. Our work distils ideas from several computing
sub-fields, providing guidance to researchers and practitioners of neuromorphic computing
who aim to push the frontier forward.
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(Dynamic Neural Fields) [79].



NRITENAREXRE, MERSHERFNAATERFENITEK (Stack) N MNER: #F
. BFEBE. iTEEE. EENNANKRNEREFESRETLESNK, BERSEZTER
NHERLUBRARRITNRAY. BEIRNE, ATEXERREBRT BESFNES, RR4A
H/REBERE (Modularity) ., X5IHT —MZOEM: MERSITERFSRIERR
B TTHRMEDSREMRMHKRKS? BRlUiERIMEARPEFHEIT-RMERE, BEiX—
MRETEATRRIAENERMERFITIC. i, BERSEZBEBREYTREY
(Biological Plausibility) , {BEXFXMELMRETS L. I BHEANSEBIRMERE. &8
PEREET, HEARSTHENEMEMSENHERAEERAMER, HEEMRFENSS M
mELAEUNEDITTERE, FEERNSEFUEREENTEREHEIN, REETNETHRE
ENEEHRER, FRINEBEEBHMRENER TNCEZNNESTY B, FZREXS
FEEEYFMEDIHTE. ELNHESEEZNNECERESIXERSMomAE L, B
X—AENHREERFRATFREZ I SMEESITTEERT XA REARED, ERENEE
e, BEXBEORRK (NSERERNFER. SHERSEREYE) AFERRRKITMERSMA
RRNEERL, BE, NIFERSIMELRZFRSEEFNEE, HIREREESHARAR
EFSHMoMERFLHRABRT, BEERRFTEERBRNEDEZ—,

MNBFHBERE, EARSRNETINIHEESHNRARRUFTD KiEHFETSITERINES.
— P EANELEEFITE (Quantum Computing) BIER. EFTEZFRLABEBIAEETZ
EHRE, BORRETHEHEFERAMHNEREMNS, flaiShor BIEAEHRFoHIAE L
RSB ESEHAEDRFIEEEXRTN, BEFITHENEICEREIIREE NEIRMEIHAMN
B8, Btbz T, RECEMRTBEERLEERES LHERSEMEEEREE T EmERRL
%, EMRZRCNFAMEREIER, XILFEEXN T HELESITERENRE. BaiE
iR, EFTERNECIERIHESTSHERN FEEIER" (BMARNITEREN) ERRSIA.

FE2RERSTITERANEENNES, HlnLEE>S (Lifelong Learning) SiF4EE3
(Continual Learning) [58,80]. ERBEHIEAEFNFS. EREMTUEMTROEEM.
ETFLRMERSHUBNERINFENFRFIE, HUELIBEHF ErHEBRAG kIR A—RFIME
EiBIERIEE (Benchmark) UIH{ESS. WHMNESSIAREEN L, MERSTHBERESE
REEEFIMITREAEERE, AMBYIREEIVECRIBENY., BEDNFEERENERETE
BINIESE, MARATRRENTCH (BEEkSE. DhEENLERE. ZREHIMETR

SBE) RBTERE, BB RAIFHEATRSIHERS, ERE—RITELES.

HE2: B/ EIRiT (Hardware/Software Co-Design)

MNEERMEHESHTER—IMEZRTE, SHETHERZE. HERE.
TEFMATER. BTXEFRIARTENRELESATER, FETSH
FHIRITE A LRASTGE. — MR HEESRERNTSERA KA 21t
MEZERFINNGIFRNRE, KGEHECHTEER, RRERGMEE ST
BFER, REEBEMRS.



1. Bl@AT (Top-Down) 7Gi%: MARARERT KIFMAIERE TR SSANIEE
[15,16189BIR T, MSHAMEENEREN, HFBXLIREkIESME M
MEZENIRTT, AERERPFERBAMPHXEITBREMIERER, LUE
EAY BRIBEESITERR.

2. BEMLE (Bottom-Up) 7Ai%: RitEFIAEESRGNEB R RIEN TR
Hix#E, MM ATTEZEETIRS[145,146], 1ZF3 AR THXRARRIR
B, FlanERITE (In-Memory Computing) [147,148,149], #hE4Z84
7K (Emerging Device Technologies) [150,151], {EBEEARNITE

(Low-Precision Arithmetic) [123,152]%%,

M, TeXRABWMRA FEREKRALNGE, BSEEERITEMEALZEEITXI R I AR AN
TRZT@BM3INEREA, BENRRSDZSXRBEMG/RENRIKIT (Co-Design) 73i&
[80,123,153], RPTICRAAMIRITEN, EENMRIUTIBRPHBEERRFENTY B
(Scalability) LARSEH4SHRGITEE.

BEamErSitENRY

EMREZINKNERKAEE LRETFRBXEZANFRRGTENT A, XETRAARF
MMNAFARERETSERKNFRERD, EtITHERNERIEZINBICMHTEIRER,
BilgnTensorFlow, Keras®l PyTorch&ESEFM 7 REHFITENEZM (NBMY) | 1LH
FREBEITRRERNIMEED, MAVERGBRAITEMAT. B2 T, BHEESITEEX
—HENAFEREEAE. HBriaBEANHELESTEIENRIEREER, FEEEHDHH
RARFFEFE, §30 JAER[81] (JavahiRAUibit BHFRFESR) . REMXKIKHIIIFFFIR
TENEREEHEN, BNEEELHHSERUFTLXLTETERRE— NI,

Hel, HRESSEZSEGNGRSMESEERTERNZAEN SRR, EFRKERBEATHFHER
%15 = (RTL, Register Transfer Language) , MIEE BEXR 4GS (HLS, High-Level
Synthesis) ., X—mHHAERENREAGMNARLROERELTRDE, SEARBAARNTGE,
BEZHEMRE, REFE—E, FEMESITETES (BEHIL[82]. BF[23]5 4L [4])
ZEEAMBNINER, SHERIENAREZEEME. 5k, MEFSITEERNIEE

ATigse, BeBIFZMEHETEE. FRENFEINN,. EFENEHITEFEURNERRES
SHEZE (W0 TensorFlow, PyTorch) S A#&REL[59], AMALESIHEERERRLXNER
NA, FIEYBAFRZTIE, MAETRZHEARESHEZRE. IRTFEZTENARDAZ
RFHFEFUTMENES, MARHENMARAEXERER, XEBRT TR ZXENESSR
—, EHB, FFREZEFIEAGEZE SR (Intermediate Representation, IR) BYEEIZ[52] 9N
EWBETEE L,

AR R DB OREERN 2R, FERAATRSEITHARGINERE, MAHEN
BRETORERNRIT EBNRMGE., X—MURERBEETHCROXA, EhHEESIHE
ETHHE—TRRE. KK, ROIMHHEESHETIERPREESRERHSRARE, SEXBE



BHFRFRTE, IBREFEREYE, URNINERREGRAENBER, HhE MERBKT
#2IT (Spiking Neurons) Hpk. AMXLINEHERNERMLSFE, MAFRXLER, B
ANNAR— M FREEE, FEH—LRATIRE,

| HREESESES |

FERACAWMPE A DRSS EMRAEKEEST, MERSITHEIHEEMKEREMH
RRAZRUR BREROBIXEBTZE, RELRCERAEBERENAMBE KR LitET
B, BASHARENUFRALMABRERFNERRL R, RIAMBMNEBEMbEIHELS
HEHERNMS. Fit, RMNPERELTSTEESRRORBRHE, FRE—FRIEHHARL
XAAXMRRFRRITFESNEERE,

HAZBIPA (R&D Groups)

ESFR, NHABNRERBEFERENFEASDEE, THEBUEFHSTESITEESR
GRHOREHAR, BEMRAIE MRS, INFRZFHITETCNRINBERE, FIaNEaEFERM
NNRIERBEYE., BEEARGRERTZHAMBEXSFRESHRE (Hardware
Prototypes) , {EftEiIBeBMAIIEZEAR. o, ATHREAREXNIFESSE, TLA
BERZEN, =&, F—NEEUE. FARANIES. KPRAZE. SEMTSESRIER
MAEZ. BEIEEEZ MM RENRIENEEHIX LSS, BiFTelluride #1 CapoCaccia #t
iT&. NICE (HEEELEBSITEIRESIN) . ICONS (ERHEFSEASN) .
Intel INRC (Intel MERSHRIMK) &, XEARBINSSFEFEEHTINELXER, FiE
EERASTTENTIZRA,

S RBERINFFRERME (Easy, Common and Open-Source Software)

FURIX "B e mERSIHERE BoMTieH, ZRUEERERSITEREESHIROME
REEFRIEZ AR (Easy Software Access) , BIFF&R%i¥a: (Compilers) fEEif
FAFRFEESEREEZEMEZESIHTEFS, MATERREREHAT. Nz R BRERF
2, LIERMEMFNGER (Back-Ends) , (BHEH MERA—InE. RABA. ZES
RYERHHEZR (Common and Accepted Frameworks) BB FRREHA BRI MATFRBRA,
BRESERLF. ARHERNENEREARBMNFFRITFIMNY (20 Apache License 2.0) R
LS MM KRR, (BHESEME, FHERBVLATNME, LEeMERZFERERIER TR
mES5MERSTERHNRE, ERARRISRREL,

EHENiXEES (Benchmarks)



MR X ZESNREENERAREGEVENRBEGERETM. AM, BFZWHERT
ez, HFEMEESTERFAR EEGERENE, EENINELRNEEREIR (Metrics) &
ENXSEEIRESE. REESKRENZSHUESHEEZNBEGFEEZAMUERELER, Bt
FEZUENEERMIZSHECNEENR. BREERoRARBEMHA, FIMNMEFEHRNN
BOMmE. 1/0 #ExE, WEHHTEXITBHAILANFEFNEENXEERM. BHLRIR
R LMERE LB AEENRNNSE s, IENEENKNRFEE: SEUHETERENR
FREENIKX[83]. AT RESHBKDHERNL (Spiking Systems) E/ENIH[84)F0FR T
KRRF (Probabilistic Systems) HIEMENIK TE[85,86]. ¥iEEAE, BESINEIIRTIF
EBK LM (SNN) HaERIEIEEE(87,88,89,90,91,92,93], BXELHIEEHRM 1ZKA
[30], EMREERSE, BRIEEARTERKEMILRNE—IER. EINE—ESnESiEee
¥. ThZE. IR (Latency) . HEFAZE (Accuracy) . GHETR. &M% (Robustness) . I
AAZE (Noise Tolerance) %, (ERMFEAXLESIETFBE RAELRSERIRIRER
REMAEBLHFEN., B, ARARBEMEATFRASEER, HIEEIERRR (Energy-
Delay Product) . 81 RMEIEAEEFE (Energy per Synapse) . #EXI/HEHE (Relative
Accuracy) &, REW, imE. EEEFMEENKNFARNDAZE—NXBRFRNHARR
%, HEMRELIARNZRE. BRfRAREESOBGHIIK, BidENX—RKFEEN
MEXERER, URARNSERSITEEEAIEGRF94], o, EFRT ATFiFbeE
ERSEGMENTE, ERTHERFEENOEFEE[95,96], A, BEEX—MERTH
BREESIHERGNRE—EENKNESRENAR—MERRE, FRFEEL R MER
SUTE XRS5 TR S M R R,

Efilg%EAR (Field-Crossing Technology)

BMERSHERREERITESHERSNBRERED (APl) ZENWNAERISEFR, BRAN
XIERIMIECHRFE (Interface Losses) , ARUIERT, XMIRFEIRT IR IRID75 ZAVEERE)
A, MRAXLEONRFEOBEXEE, BNRERLESHESIZAESESRITERND, HEAK
83 BE £ O SR T THRHAEE,

BE:SI8E (Proofs of Concept, PoC)

TS ERNM SIS ER AR ANREE S ERNVEINMERNBNEEFR. ATERANKRE
MWD, YFEHAFRAMSERSENRSKIESAHEXEE, BSWIENTMAOEKX
B, EERSBIERS BT E AL (Ripple Effect) . fIgl, RiT—"EALZIRAEFAI6E
SUALAHESIRNE, EF2DA SRR — D E R AR IE S E AR S RE I,
RARSEREBEEZZEEOZMW, R NFIATRABEBHENECTENRIRBIAE
m. ERSIEIEN R ANRREMIERAHATLLN, BHREARRILRL .

{filf/RiE (Listening to the Feedback)



BARIRIESR (Recursive Feedback Loop) BEIFHUAAR A, MABSINE, FIFE
ABRBREE. SRR AT ONTGEEBRERKR LA ECESIRMATRR, FifEs
B4/ ROt EIZLT (Hardware/Software Co-Design) .

| B |

HEREIZIRZE Neuroscience exploration

EEAMAECENNESREPHREESITERANNATELAEE. — BRI EIN
(The Virtual Brain, TVB) [97], —"Ea&E8Z#EMFMTAIMKFEE, (BEGPU LHITI
IEHRRSERT RN AR BBk . EINEAEEZWSREEEENA, B MELRR%E
% (Alzheimer’s Disease) #ill[98], REBEINRMEFSIHERREETIZHHPRINA, X
MREHIT, EEEIHE, B—MFEMarkram FEFAZT (Markram Cell Study) , %
FfEFABlue Brain IV @RITEHIHITRIN, £20IBlue Brain IV Z2EIKAFRSE1000ERITE
W, BENEEEMKIEIREZE (Barrel Cortex) #1fJ 31,000 RAMEETT, HHLEME ARKI
ARABEHIXZ 100 HENEET, BMERFHREEHTUNLHMIENERIVEEEESHITE

Example applications

Nz:r;mli::ic o * Activity monitoring
R&D multiplier instream y
DEvelone —_— (incentive-driven) —>»  Proofsof concept —> e * Remote sensing drones
community » Self-driving cars

* Health monitering smartwatch

ES5: TMHRESENXEEE

HRKHMIEREEFRITISENMSRIE, BEFHELFSHBEESRREZINMITREE
HEHBEERNRALRNR, MTRZARAEREROREIN, HRITIERIFIMDEKR, Sk
AU E N BETS I NEN, BREZEHERNABRARA. Wi, BEBIMTRHARAEN
RERFHMIIARSS, TUAH—ERARRER ST BESR RN,

BFRINAFBRAREIMRRABERZTEUNFEES, ABEENM T HiF
ED



S mEHnneEREsH

-

E#R (TVB) EE&ENSNA

FMt, AREEAAREBHSRIUREERAHR T PR

2R (TVB) &7
TVB) £&7?

- WfEREME (TVB) £5
(o EEmwED

—MNEENESESHTEREEGTFERE SpiNNaker2[99], ZziSHEZAXXMITE (Human Brain
Project) B9—&8%, BEEXIFHERFRER. BEERRZ, SpiNNaker2 5 Loihi 2 REEH
RiENEEMESS (Flexible Numerical Accelerators) , BEBEZNER EEIMEZITA,
BIEZRME (Synaptic Computation) | #iz8itE (Dendritic Computation) [23,100]&#54
IR, BRIt (Spiking Point Neurons) | EEM4Z5T (Rate Neurons) [23,99]%#4&
TERE®R, LK1 HEDBR ( Mean-Field Models ) [29] . ¥ B F 5
(Electroencephalogram, EEG) 17 4#&#1[23,101]Z%HhRE (Mesoscopic) &f&, XLERS
EARTXHFERE (Multiscale) BRi&EEY, BIANEMIKIO7], FEESRZIEARAMMERISE
RHEIBED. Mo, BRBEZSHNREESHECREEHATT, JUZFHEZRFLE
[23,39,102], A, EXLIWAME. BHALHBERFRANFEEH—DPRIRAKLREMNIL.

ME%3BE ML innovations

NeEFINBREF KB EFFZINGE L, MARKEERWE (Explicit Programming)
RATHEES. EFERNEEZHEBANETTHENBHNE, BRANRRTEREL
(Connectivity) . {§ B %7 (Information Representation) . ZJ#| & (Learning
Mechanisms) &5HE.,

BRTEENM, REFIFENTETROEN TIHERONEIH. A, XEHSHIETEMR
3, HPp—1TBEUKE"BAFE (Hardware Lottery) "[103], BIRLITETAMIMINERE
FIEHTEASIEYE, MERSCIIGIFLEARREERE, X—NKRE—ERE LS
THEEKIL (Neuro-Inspired) H2RFIRICIHT, EARSENAIEEHSFFSERLEFHNE
EXEBRIET. B, HMPANKRESHRIELT ST ERGEBENHREE R mES
(Neuro-Inspired ML) [104,105]. E3sRETIRBIMRBHIZSEE, TEARKNRES
BUFTRIEE

REENR, XERARLHRESTSEHTEBINEE: £HEEKE (von Neumann) it
SEEEBRANEAHEABREIRIZAERD, MESHESTENRARESRANEEINES

bl



MTARAYIRIT S, EEHEESEGHNARYTESEHRENERFE I WHTFRIFRER
THE, KN EEAXAGRR T Z2ITENEAR—H LTS HEEFEITREMN B EN EE
ThgE, MESREY (WNEEFONGPU) XANREEMNIIGERN, SARNEINFFEEE
X5, fBtbZ T, HERSHBEEEIXEHRAEBRE—TT=RIMINS[ZITESFHED
BXEMIREBRL R, NMENATEERESN. EROENFIRANTERE.

451152548 Emerging devices and architectures

BHNFERANREZESHERANTT BEEXEE, NEEFMHE (Storage) | ME
(Consolidation) &% (Retrieval) , FHE=RA T FIME T RWLMRAVEAIEM. FX
1ZFEE& (Memristive Devices) EMZESITEIHAERMHEXE D, HIFFZKM (Non-
Volatility) . EFM#EZEE (High Density) f1ZREFHESE (Multistate Properties) (i
WHE3) , FERAHNESHIHEESHERENOXRBRAZ—. Wi, 1ZHEHHFES
(Memristor Arrays) BESFEIZEHITIR-ZI0 (Multiply and Accumulate, MAC) =8, X
[ERMENBHZOTTERE, EETREER (Ohm's Law) TR ZBRINFERIITEINE
[106,107], E(FEFXFERAESEIIRoiTH, BEABER TRIHEEUATRY : (K8EFE: ~f)/bit
(CEESHE) | KR, RI{FEE (Low Operating Voltage) : <1V, SMAEK:
>1017R1EIR, BEIEIRIFEEN (High Data Retention) , &al¥ EBtE: <10nm, FrRECMOS
TZ[108]%.,

REEBHAF X REIZRBEANPRIERE PO, RIANSENES

REERLI
ERSEMAR REALE M TESINORER, ANEEIT #FER

7 MEHNFREHW
Pk o 440 £ 9 4% e L vz

FitA:
@ 38, TREHFRAGHIERENSE, WERH
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fE3: FrXEER AN E b

lig== TXEFESMERRERHFNBTRASIHER S, SEETEHE
g8 (RRAM, Resistive Random-Access Memory) [107]. BlieRE F2E4
(Spintronic Devices) [154]. #E AT (Ferroelectric Transistors)
[155]. 1H%&FME=R (PCM, Phase-Change Memory) [106]. #N783R[1]13%35ER
DI EFES G SERFERATE S MEXIER ERMREHT T, REXLY

MABHEANERFEFNB N IETEERSHIZHE[156], B{hElIeZIkdk, £
E@EE’%#E’\JHEE?@%& (Non—ldealities) 5ECMOSTZRIEEE. IRE
B (Leakage) F. o #HXFMHsEHE=HBIEMAEXNELIIZ
(Online Training) [121,146,157]%%%%#35@2@&, X—REEAER
WEBERAMENFIR M TEBES R, BEEERITEFNEMESSETITEBELINE
MIZFEATE R, ItFh, FEFES R EIFEE M R EATTEMNE, Flu
f&¥RE (Cycle-to-Cycle) F=§f4E (Device-to-Device) S#Z TN
MEriHE (Bayesian Computation) [146,158]1f1B4H4R (Self-Organized)
NEMBPRRNSEHFI[145], {ZEBUABHSEHEETH B FEanEN
(Motion Detection) [159]#17E%=>] (Online Learning) [160]. HAIX
L EERRIRRE AR AR BRI NAR—NERNHARAME. BE
BEZ7FfERS (RRAM) FEFXIAARRRFE R, HIFBKUMNFERITERDER
EXNRY. EEMEZRN B SPTEHREEERS| 1.

=

CSITRERGES N TEEFEARREBERE, SRIELTANELIFIIREIZ.

%

Z T

ENZFAMEFRNRERS, RRIESEHRMNGE. SFIRBMRITTE, FS5UIHRA
EENEFRRE., EHEM E, TURSHENELSHIIBERSRE, H BRENAZE
Z400E, BEMZFITE (Scentific Computing) | EB3E/EH MWL (AR/VR,

SviE



Augmented/Virtual Reality) . AIZ&i%% (Wearables) . HERI (Smart Farming) .
BEWT (Smart Cities) %, BEHEHEMNZWHNERRE, FEAMITRIDFIOIRZRURQHM
FAENMAERLZBER FTHEGE. AMRBET —HRREELE, B4E 7 IZWUHAIKEF IR
USSR R ERIRR A,

B, HRINEEFAESESHTERFAMESENESD, 8FRBIBAITESRT (Common

Primitives) , FALARMANHITIEERBEAREN, ARZHEENE, AXKWASNAR

ESETUHMNREAR, HUSHANiEE, ERMXERRERSHELSIHENEER

NEREN (EEBENEREL) FRE—XN, EAXH, KIJREE T —HIESHHITRT

RETESET, LMEEREAR. BENMEENHESESITERR. XERRNEZEH ZHES

NE, PINEEZHSEEY. ETEHRKNERBHIENIMNRR. ER-EZMEEE

(Sensorimotor Fusion Algorithms) . Zi#&EZ&%> (Multimodal Learning) . FUIEE R

(Predictive Modelling) %, BRIFRMNANERTFE—EHFEHIBoOREE, MENRESHF

HHBED, HPHARENAR R THRLHSSHMEXER., HERSIHERRANERA"—T]

Y'HBRRG R, Bk, AENAZRUEFEEGARSERRERSEMRRTTER. SR

ZSHBERFEEEETRORHENR, EAMERFHATRHAER, NX—EEHE, &)

REARPNTM:

1. MESHR. REAENENEBMEIIEL (Robust Models and Algorithms for
Distributed and Asynchronous Systems) , XFEEEAMERNMESE S, FIEEERE
fi%o

2. YREIEBEFAMNENMLITEHN (Scaling Up Learning Models to Larger
Networks and Machines) , ATLUEEAI £ XML, BAMBEEEREER IR

(Cloud) S BHI+E RS (Heterogeneous Systems) £, WRIX—BEIRREHHEII, &
ZESHERRORBEBIE B AR

a1, MEFSHENHRAEZR TR =FAIERERFNART RO AT, S
MBERMIFEZHELUGEAXLEWATFE. XESHSTESIHHEEAREN (Portability) |
HWHBEFERAIRREL HBRIPkE. ATHRRXLEE, FTNTLSHERIFBRFEafmEENT
FEREIR, RXARFT—RNAHE. BENAETSIHERS, SRBENAFEESRESERITE
ROEMR, BREREARNREERKANEDANANHAR. W, XEFRSRFZESTN
ERMREIERE T MEENR[94]. BAIETLUEEREZIWHAINNZER-TIWEME, H#—F
INEHZSFSIHERAAER. SHEN, XUEAREFZILXERFNERE, RREEUA
REIFANUESGIE.

Bk, BTREREALSFIHEAOREIEFRIT TREEEKES, AMERDRARZ—1N 5
BRRAESRANLERICR, RKERNSFERMIETHRIF K. 2RO TUESIEKHEEFT
mIEMNX—=H, BARS TENFANDARIGIAN, RERFUENESSREL (WEY) .
Rk, RMNFEHENTERNKE, FEHEBSERAEFITERS, NEEZTTREFS
TERMRESRES. Lo, FMNENKERMESHRANRFOXBNA, Fo2EIBART



B (Non-Cognitive Applications) . BGmD MR ERURBELSRKASREZIRRE
AR R .

Ra, BORUERETARNOFNEDE, XERBEISAEHERTARNEE (1E4) . PHR
RAEEA (fB5) ARKHIFHEE (f86) . SAIERKRBTHENSHEAMEL RIVESR
R, X—UHAIR RS ARKIIA T E R FNEARE R AR TR,

fE4: FEHAFA A

B/ EIRITHESR . FRANERE BRI AP RIFREG/ KA EIRIHE
2R, FEIFEREEFARKBEFLSITERE? b, XMERESTLUEXMER
RhENA?

RERSE: HRANRERFNRENNFENEFMESFE? WEAEEZRIH
FA XXX L RBYAGII R PR ?

RBER: MIRAMELSTRERRSERTERS (NNESE) RISEMERE
2

HETER: AR FRERBHREGETR, FHEBSERREFIEREIR

18? REYJUARESHSERNRETIE, FEETHEERE, FESER
PiERTE?

HES5: HHBFAZSEIER (Medium-Term Questions)

AMEWHF S NEOEERNATE LBEFWH. KMEHSTSTERS
ER?

HEEULN: #EESHENEREENNEGNSEPLAS? A XLEEE
WHHITEROTME? MRS ERTHRD YN B S pLrit?

BEFS): BHRPPBMBEIMT BRI TIHFEREREFIEHAIE RN
7% EATEERTXYERFFE—RE?

HSEE: MIERRNBESTHERRFSINERNHE? BIIFERRE

BEEERDNDENREHRSSEHEH, IRMES . WRLEE (Dendritic
Processing) . EFEMHIIMEIERIER.,

HE6: KHAFAZEIE (Long-Term Questions)



KENA: EEHRERSITENATESXER (Mission-Critical) %2
X428 (Safety-Critical) RUIZE?

| &
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iITEMENZFERS

AEKEZ—EHEHUBZIHIRL THEEEZEMNERES, WARR [ENFEFRE
AR . RNERERBHEMZE. RRERZE. EERE. MEZE FURTENRZESER
Ed, MRE, RREESHE. ALZRRKEBNFATFENRASGE, SEERKRED
KEERIISANEERNERZEREHE. I\H. BRIEPRE=F—— [HEHER
F] EPe, REERMENNZE. MELTERSIHE. BREMZHNNZE. HHEHALRNZ5A
FREMNAER, AFERTHEHSNENRREEMATERNELR. EPRRERE, WE
IRB AT IINALEFF AR B4R AR .
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